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SUMMARY

This report presents a critical review of the literature on
the theory of the generation of sound by the interaction of low
Mach number turbulent flow with the edge of a semi-infinite rigid
plate. Three distinct approaches to the subject are 1identified,
consisting of theories based on (i) Lighthill's acoustic analogy;
(ii) the solution of special, linearized hydroacoustic problems;
(iii) ad hoc aerodynamic source models. It is shown that, when
appropriately interpreted, all relevant theories produce
essentially identical predictions in the limit of very small Mach
numbers. None of the theories discusses the implications of the
Kutta condition, however, nor of the effect of forward flight and
source motion relative to the trailing edge. Accordingly the
report includes an outline of a redevelopment of the theory which
gives a unified view of the problem, exhibits the significance of
the various approximations, and incorporates the effect of mean
motion and of the Kutta condition.




SECTION 1 INTRODUCTION

Sound is produced when unsteady flow interacts with a
sharp-edged body such as a wing or flap. The noise generated by
turbulence at the trailing edge of an airfoil can make a
significant contribution to the overall socund radiated below the
flight path of an airecraft (see, e.g., Fethney 1975; Hardin
1976). An important practical problem, therefore, concerns the
development of procedures for predicting the characteristics of
the radiated sound, such as its spectrum, field shape and the
possible effects of forward motion of the aircraft. Ideally one
would want to be able to express such predictions in terms of
easily measured or estimated properties of the unsteady flow over
the wing at flight Mach numbers corresponding to take-off and
landing, and which are typically of order 0.3 or less. Thus flows
of relatively 1low Mach numbers are of particular interest,
although, as Crighton (1975) has emphasized, Doppler
amplification can still exert a significant influence on the
field shape of the radiated sound.

Data on the edge noise mechanism have been cbtalned from
experiments in which the turbulent flow over the trailing edge is
provided either by a wall jet (Hayden, Fox & Chanaud 1976;
Grosche 1970; Scharton, Pinkel & Wilby 1973; Tam & Reddy 19775 Yu
& Tam 1977), or by a low Mach number open wind tunnel flow
containing grid turbulence (Fink 1975). These experiments were
undertaken to determine the dependence of the acoustic field on
fluctuating properties of the flow close to the trailing edge,
and the scaling of the spectrum and overall sound pressure level
(OASPL) with the mean flow velocity. The effect of flight on
ftrailing edge noise has not been examined experimentally. In
principle such an experiment could be performed in an open wind
tunnel, for example, provided that the technical difficulties
which have been encountered in analogous flight simulation tests
on jet mixing noise can be overcome or shown to be unimportant
(Fisher & Morfey 1976).

The problem of trailing edge noise at low Mach numbers was
first examined by Powell (1959). Similarity arguments were
advanced to estimate the strength of postulated aerodynamic
dipole sources located on the plate near the trailling edge. It
was deduced from this moﬂeé that the edge noise scund power
varies approximatelyasU™™ >, U being the characteristic flow
velocity, and that the power spectral density decays inversely as
the cube of the frequency at high frequencies. Powell's treatment
was not sufficiently detailed to predict the field shape of the
radiation, nor could the effects of flight be considered.

The subsequent theoretical discussions of edge nolse have
been principally in terms of a prototype configuration which
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models the wing and trailing edge by a semi-infinite rigid plate,
and consequently limits the validity of the conclusions to cases
in which the nominal acoustic wavelength is small compared with
the chord of the airfoil. The variocus published theories differ
mainly in the way in which the fluctuating flow 1is assumed to
interact with the edge of the plate to produce sound, and fall
roughly into the following three categories:

(i) Theories based on the Lighthill (1952) acoustie analogy.
These have been developed by Ffowes Williams & Hall (1970);
Crighton & Leppington (1970); Crighton (1972a); Levine
(1975); Howe (1975, 1976, 1977).

(ii) Theories based on the solution of special problems
approximated by the linearized hydroacoustic equations:
Crighton (1972b); Jones (1972); Crighton & Leppington
(1974); Morgan (1974); Chase (1972; 1975); Chandiramani
(1974); Davis (1975); Amiet (1976).

(iii) Ad hoc models: these involve postulated source
distributions whose strengths and multipole types are
generally determined empirically: Hayden, Fox & Chanaud
(1976); Tam & Yu (1975); Tam & Reddy (1977).

In this report the edge noise theories listed above are
discussed in detail. It is shown (Secs. 2-4) that when suitabl
viewed all relevant <theoretical models 1lead to the same U
scaling law for the velocity dependence of the radiated sound,
exhibit the same static directional characteristics and the same
dependencies on the length scales of the turbulent edge flow.
None of the theories gives an overall picture of the edge ncise
mechanism, however, in that those listed in (i) determine the
radiation in terms of an assumed turbulent velocity field, while
those in (ii) are confined to particular flow models or relate
the sound field to pressure fluctuations on or near the edge of
the plate.

The important question regarding the nature of the boundary
conditicon at the trailing edge, viz., whether or not the unsteady
flow should be required to 1leave the edge tangentially in
accordance with the Kutta-Jdoukowski hypothesis, is considered 1n
detail only by Jones (1972), Crighton (1972b), Davis (1975), and
Howe (1976, 1977). Crighton's conclusion, that the imposition of
the Kutta condition produces a dramatic increase in the level of
the radiated sound, is now knoun to be incorrect (Crighton 1977,
private communication); according to Howe's (1976, 1977)
treatment of a series of two-dimensional model problems, the
removal of the flow singularity at a sharp edge always leads to a
reduction in the radiation, because the sound’ produced by the
vorticity which must then be shed from the edge is of the




appropriate phase and amplitude to cancel much of that generated
by the 1incident turbulent flow. Yu and Tam {(1977) have used a
wall jet to investigate the nature of the flow at the ¢trailing
edge and conelude that, at 1least at the relatively low Mach
numbers of interest iIn the present discussion, vortices are shed
into the wake in a manner which tends to oppose the production of
a singular edge flow by the incident turbulence.

In Sec. 5, the detailed conclusions of the diverse theories
reviewed in this report are condensed into a single theoretical
model. This model exhibits:

I. the dependence of edge noise on the turbulent velocity field
near the edge;

II. the relation between the acoustic spectrum and pressure
fluctuations near the edge;

ITIT. the significance of applying the Kutta condition;

IV. the effect of forward flight.
The principal conclusions are summarized in Sec. 6.

The geometry and ccordinate system t¢ be used 1in the
discussion are depicted in Fig. 1. A rigid half-plane occupies
the region (X { 0, %5 8 0) of a rectangular ccordinate system
(%1, %o, Xq) an& is located in fluid whose mean velocity far from
the plate 1Is Up parallel to the positive x; direction. Turbulence
is convected past the edge of the plate in a boundary layer or
wall Jet flow whose mean velocity ¥V makes an angle B with the
positive x4,-axis, where ¥V @ V (cosg, 0, sing)=(V,, O, V3). say.
It 1is assumed that close to the edge of the piate vV =7V(x,). a
function of the distance x, from the surface of the plate, and
that the turbulent flow we%s a length L of the edge. Mach numbers

MO, Mv are defined by
)
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FIG.

1(a)

TRAILING
EDGE

OBSERVER
LOCATION

CONFIGURATION OF THE HALF-PLANE, THE RECTANGULAR
COORDINATE SYSTEM (xi1,X2,%x3) AND THE OBSERVER

COORDINATES (R, 8,a).



TURBULENT BOUNDARY LAYER/WALL JET FLOW PAST THE
TRAILING EDGE IN A MEAN SHEAR FLOW V(x,) WHICH
MAKES AN ANGLE g WITH THE POSITIVE x,-AXIS, AND
WETS A LENGTH L OF THE EDGE. THE MEAN FLOW FAR
FROM THE PLATE IS AT VELOCITY U, IN THE POSITIVE
x,-DIRECTION AND SIMULATES FORWARD FLIGHT AT THIS
SPEED.



where Ehe sBeed of sound, and are taken to be sufficiently
small that M may be neglected relative to unity, so that c¢
may be regar ed as constant. In this respect note that mean flow
effects arise in two ways: terms linear in M account for the mean
convection of the aerodynamic sound sources and of the emitted
radiation; second, terms quadratic in M describe the dynamic
effect of compressibility on the mean flow. Be ignore the latter,
and systematically discard quantities of 0(M<) relative to unity.

The author gratefully acknowledges the benefit of
discussions with K.L. Chandiramani, D.M. Chase, D.G. Crighton,
J.E. Ffowes Williams, and R.E. Hayden during the preparation of
this report.
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LIST OF SYMBOLS

distance of closest approach to edge of plate
of the vortex of Figure 2(a)

stagnation enthalpy

speed of sound

numerical coefficients

nozzle exit diameter

dipole strength

pseudo-sound wavenumber spectrum
laminar sublayer transition function
Green's function

wavenumber variable

wetted length of tralling edge
characteristic spacing of eddies

length scale of the mean boundary layer/
wall jet profile

turbulence correlation scale in the j-direction
characteristic flow Mach number U/c

W/c

v/e

Uo/c

unit vector parallel to Y

wavenumber vector defined in (5.17)



LIST OF SYMBOLS (Cont.)

| pi pseudo-sound pressure
4 pK, pI pres§u?e fluctuation with/without Kutta
condition
9 root mean square hydrodynamic pressure
fluctuation
P overall acoustic frequency spectrum density
a, mean dynamic pressure
9, q vorticity dipole strength
@, g, ﬁ Pourier transform of @, g, p
S’SI’SK’SKr’SIr acoustic pressure frequency spectrum density
U characteristic flow velocity
UJ nozzle exit velocity
U, mean stream/flight speed
v velocity
Vv = (V,,0,V,) mean boundary layer/wall jet velocity
Y mean eddy convection velocity
v root mean square turbulence velocity
W= (W,,0,W,) near wake mean velocity
Xj’Xj’Yj rectangular coordinates
(j=1,2,3)
Greek

B ‘ angle between Y and xl—axis
Y,T vortex strength



y(k), T(k)

§, 8,
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€
-
LE|

LIST OF SYMBOLS (Cont.)
X,-wavenumber component
turbulence correlation scale
laminar sublayer thilckness
characteristic eddy volume
rms volume of edge noise source region
wavenumber magnitude in (1,2)-plane
wavenumber  -vector
x,~component of shed vorticity wavenumber
surface pressure spectrum
density
retarded time
w/V
numerical constant
velocity potential
spectrum function
spectrum function
stream function
radian frequency
ueVv

~ o~

vorticity
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Mixed

(R,g,a)

(r,0,9)

LIST OF SYMBOLS (Cont.)

observer location at arrival time of sound
[see Figure 1(a)]

observer location at time of emission of
sound
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SECTION 2 EDGE NOISE THEORIES BASED ON LIGHTHILL;S
ACOUSTIC ANALOGY

Ffowes Williams and Hall (1970) have considered the infinite
Reynolds number limit of Lighthill's (1952) equation in the case
of isentropic turbulent flow in which the ambient medium is at
rest, Uy = 0, and perturbations in the pressure p are related to
density fluctuations p - P » DY

p = c?(p-p,) (2.1)

where p, denotes the mean density.

The starting equation for their analysis was accordingly

(pvivj), (2.2)

where v. is the fluid velocity and t the time. This equation was
solved for an assumed knowledge of turbulent Reynolds stress
pv;vs; by making use of a Green's function G(x, y, t, 1) which
sa%igfies )

2 2
L9828 o s(t-n)s(x-y), (2.3)

2 2 2
c‘ 9t dX,
J

the radiation condition of outgoing waves at infinity, and the
rigid surface boundary condition

=0 (2.4)

on the plate (x1 < 0, X5 = 0). In the particular case of a plane,
rigid boundary the condition (2.4) 1is also satisfied by the
pressure p.

By this means %t was deduced that the far field mean square
sound pressure <p“> produced by a compact turbulent eddy of

12



volume A located well within a characteristic wavelength of the
edge of the plate and translating at velocity ¥V is given by

2,22 2 2 '

pfv V.M

<p?> = —i——;——l (%) (li) sina-sinz(%) ccos?B. (2.5)
™ 8

In this result

.02

=@ mean square turbulent fluctuation velocity;
§ = characteristic turbulence correlation scale;

R = distance of observer from the source region;

X

9 = tan~ {2 , the '"flyover" angle, (x1, Xo, xg) being the
observer coordinates (see Fig. 1); -

o = angle between the observer direction and the edge of

the half-plane.

According to (2.5) low Mach number turbulence near the edge of a
rigid half-plane generates sound whose 1intensity exhibits the
usual half-angle dependence on the '"flyover" ang%e 0, peaking in
the forward are 6 > w/2, and scales as U7, U being a
characteristic flow veloecity; this gay be cogtrasted with the
weaker dependencies of respectively U and U predicted for
turbulent quadrupole sources located in the vicinity of a compact
scattering body (Curle 1955) and in free space. In deriving (2.5)
no attempt was made to estimate the influence of the back
reaction of the plate on the turbulent flow. The authors argue
that the prediction of a fifth-power law is a consequence of a
potential field singularity which appears in their theory at the
edge of the plate, and that the conclusion could be substantially
modified 1if any type of Kutta condition were introduced to limit
its effect. The infinite Reynolds number assumption must break
down close to the trailing edge at sufficiently low frequencies,
and it is difficult to see how the presence of a singularity can
then be Jjustified. Viscous forces may be invoked to remove the
singularity, but as a consequence there will be unsteady vortex
shedding from the edge resulting in the generation of additional
turbulent fluctuations in the flow. 1In Sec. 5 the question of
vortex shedding will be examined in detail, and it will bg
concluded that in general the radiation continues to scale as U

when the Kutta condition is imposed.

Expression (2.5) may easily be extended to take account of
all of the turbulent eddies in the flow which contribute to the
edge noise. Let Gn denote the correlation scale of a typical eddy

13



located near the edge of the half-plane. The lateral extent of
all of theSe eddies is equal to L, and the effective mean square
volume A of all eddies located within a correlation scale of
the edge iIs therefore given by a summation over L/8 uncorrelated
eddies. Thus we have

2
N
R _<5(rzlan) >

§2(L§) (2.6)

>
N
14

14

In addition, however, Ffowes Williams & Hall (1970) note (but do
not exploit) the fact that the relative contributions from eddies
arranged along a line parallel to the plate and perpendicular to
the edge are weighted in inverse proportion to the square roots
of their respective distances from the edge. The net result of
this weighting 1is to introduce into the effective volume of the
source region a factor proportional to vecosg. Taking this and
(2.6) 1into account we obtain the following order of magnitude
edge noise prediction formula:

<p?> = p§v2V2MV(&§) sina-sinz(%) cos®g. (2.7)
R

We shall argue below (Sec. 5) that this formula remains
essentially unchanged when account is taken of vortex shedding,
although it does not include O(M) effects of aerodynamic source
motion relative to the plate nor of aircraft flight.

Ffowes Williams and Hall (1970) also obtained a U5
dependence for the case in which the disturbed flow satisfies a
"pressure release" boundary condition on the plate, the latter
being unable to support any normal stress. However, Crighton and
Leppington (1970) have examined the problem for arbitrary surface
compliance and their analysis shows that this prediction for the
pressure release condition must be regarded as singular. They
recovered the Ffowes Williams and Hall result (2.7) only when the
fluid 1loading of the plate was not significant and the plate
relatively rigid. A quite different result obtains in cases of
high fluid loading. ghe plate is now limp and the radiation is
found to scale as UY. Accordingly, the effect of surface
compliance 1is to weaken near field scattering by the edge, but
Crighton and Leppington show that 1in aeronautical applications
only the first case considered by Ffowes Williams and Hall (1970)
of a rigid half-plane is likely to be relevant.

14



In order to provide an explicit theoretical model of the
edge noise mechanism Crighton (1972a) analyzed the
two-dimensional flow illustrated in Fig. 2(a), involving an
idealized turbulent eddy in the form of a line vortex of strength

' aligned parallel to the edge of a rigid half-plane. The mean

flow 1is at rest relative to the plate and the vortex translates
along the dashed-line path under the influence of a system of
image vortices. The detailed motion of the vortex may be
determined by assuming that the flow near the edge satisfies the
equations of an ideal, incompressible fluid. The local unsteady
potential flow thus defined may then be matched onto an acoustic
disturbance which radiates away from the edge of the plate. In
this way it was found that the intensity of the two-dimensional
sound field scales in accordance with

<p?> = piv“(%ﬁsinz(%) , (2.8)

where v = I'/a 1is the characteristic fluctuation velocity, a
denotes the distance of closest approach of the vortex to the
edge of the half-plane, and (R,8) are polar coordinates of the
observer in the (1,2)-plane. Comparison may be made with the
Ffowecs Williams-Hall result (2.7) 1if in the latter case the

observer is assumed to lie in the "flyover"-plane o = 5, and the
mean turbulent flow velocity V is taken to be in the direction of
the x,-axis (8 = 0). Both predictions are seen to agree apart

from a factor of order M(L/R) which accounts for the spherical
spreading of sound waves from L/§ uncorrelated sources occupying
a finite length L parallel to the edge of the plate.

Howe (1975) re-worked the problem of Fig. 2(a) directly from
the acoustic analogy theory of aerodynamic sound and deduced that
at low Mach numbers the far field acoustic pressure could be
expressed in the equivalent form

poFsin %

DY
o - [,] , (2.9)
1vVR Dt
where
)
¥ = -/R, cos(—i) s (2.10)
2
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FIG. 2(a) A LINE VORTEX OF STRENGTH I TRANSLATES ALONG THE
DASHED-LINE PATH UNDER THE INFLUENCE OF A SYSTEM
OF IMAGE VORTICES IN THE PLATE. THE RESULTING
UNSTEADY MOTION IS ACCOMPANIED BY THE EMISSION OF
SOUND WAVES.
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APPLICATION OF THE KUTTA CONDITION RESULTS IN THE
SHEDDING OF VORTICITY y OF OPPOSITE ROTATION TO
THAT OF THE INCIDENT VORTEX I'. THE INTENSITY OF
THE RADIATED SOUND DEPENDS ON THE RATE AT WHICH
THE VORTICITY TRANSLATES ACROSS THE PARABOLAE

¥ = CONSTANT.
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(Rg, 83) are the polar coordinates of the vortex, and [D¥/Dt]
denotes the time rate of change of ¥ following the motion of the
vortex at the retarded time t-R/c. The function V¥ assumes
constant values along the family of parabolic curves illustrated
in Fig. 2(b) which coincide with the streamlines of an ideal,
source free two-dimensional potential flow about the half-plane.
This type of flow can exist only in the absence of aerodynamic
sources in the vicinity of the edge, 1i.e., when the edge 1is
"silent"., Eq. (2.9) reveals that the edge noise produced by the
vortex is governed by the degree to which the actual flow near
the edge departs from such a source-free potential flow, and this
is measured by the rate at which the vortex translates across the
family of "silent" streamlines.

This idealized description of the mechanism of edge noise
generation in two-dimensional flows leads to a simple and elegant
view of the effect of induced vortex shedding. Consider the
situation illustrated in Fig. 2(b). The flow induced in an ideal
fluid at the trailing edge by the vortex T 1is in the sense
indicated by the dashed curve, and possesses a singularity in
velocity at the edge of the plate. The Reynolds number based on
the boundary 1layer thickness at the edge 1is finite, and in
practice the flow around the edge is impeded by the shedding of
vorticity in a manner which tends to remove the velocity
singularity. This requires the <c¢irculation Yy of the shed
vorticity to have the opposite sense to that of the incident
vortex I'. Assume for simplicity that the principal component of
the shed vorticity may be represented by a 1line vortex of
strength y. It then follows from (2.9) that the total radiated
sound is given by

. (6
poSln(E) { [Dw] [D‘P] ;
VR b Pty

where the material derivatives are evaluated respectively at the
positions of the incident and shed vortices. Both the incident
and shed vorticity translate across the VY-parabolae in
essentially the same sense. Hence the material derivatives in
(2.11) have the same sign, but I' and Y are of opposite signs,
from which we conclude that induced vortex shedding must reduce
the overall 1level of the edge-noise. It will be shown in Sec. 5
that this is also expected to be the case 1in more general
situations involving compact, three-dimensional turbulent eddies.

The problems illustrated in Fig. 2 have been generalized by
Howe (1976, 1977) who applied the acoustic analogy theory to
cases in which the incident vortex T was constrained to move at
constant velocity V in the direction of the x1-axis in the

18



presence of a parallel, ambient mean flow of velocity Uo(x2)
Several flow configurations were considered, including that " in
which the mean velocity Uo(x2) assumed constant but different
values on either side of the plate and of a vortex sheet
extending downstream into the wake (c.f., Fig. 3). The mean fluid
density P, was also permitted to be different on either side of
the plate. In all of these cases it was found that when the
Kutta condition was 1imposed at the trailing edge, so that the
flow left the plate tangentially and additional vorticity was
shed 1into the wake, the total edge scattered radiation was
reduced to zero provided that the incident vortex translation
velocity V was just equal to that of the local mean flow in which
it was 1located. When this happened the wake vorticity also
convected at velocity V, and the sound it produced was equal and
opposite to that generated by the incident vortex I'. In addition
it was shown that the degree of Doppler amplification of the
radiation due to forward flight (and simulated in the analysis by
the ambient mean flow velocity U (x )) depended critically on
both the aerodynamic source ve1001ty relative to the plate and on
whether or not the Kutta condition was applied. Flight effects in
relation to the edge noise problem have not been otherwise
examined in the literature except for a recent paper by Crighton
(1975) in which, however, no account was taken of source motion
relative to the trailing edge.

The results of these various idealized problems suggest that
induced vortex shedding tends to reduce the level of the radiated
sound by increasing the effective length of the plate, 1i.e., of
the Dboundary on which the normal velocity of the fluid vanishes.
More specifically, in the absence of the Kutta condition there is
an infinitely rapid transition from zero normal velocity to a
singular normal velocity at the edge. Vortex shedding reduces the
gradient of this transition, and, indeed, in the limiting case in
which incident and shed vorticity convect downstream at the same
constant speed, the normal velocity actually vanishes at all
points of the plate and the wake (Howe, 1975, 1977), and no edge
noise is produced.

Levine (1975) has examined a sequence of model problems in
which the turbulent quadrupole strength pv;v; was assumed to be
constant in a frame convecting at a mean " Ge1001ty V in an
arbitrary direction relative to the half-plane. It was shown that
at low Mach numbers those quadrupoles with axes normal to the
edge of the plate generate sound gst efficiently (i.e., with
sound pressure level scaling as U The possibility of vortex
shedding from the plate was not con51dered; Levine's results
therefore corroborate the general conclusions which emerge from
the Ffowes Williams & Hall (1970) theory.

19



SECTION 3 THEORIES BASED ON THE SOLUTION OF LINEARIZED
HYDROACOUSTIC EQUATIONS

A variety of idealized, two-dimensional flow problems has
been discussed by Crighton (1972b), Jones (1972), Crighton and
Leppington (1974), Morgan (1974) and Davis (1975) in order to
estimate the effect on edge noise of a wake extending downstream
of the trailing edge and separating uniform mean flows at
velocities Uq, Uy, say (Fig. 3). The analyses were based on the
linearized equations of motion for which the wake was modeled by
a linearly disturbed vortex sheet.

Crighton (1972b) considered the case in which U, = 0, and
showed that, in the absence of aerodynamic sources outside of the
wake, sound can be generated by the shedding of vorticity from
the plate into the wake, the resulting fluctuating flow being
singular at the trailing edge. The sound field may be calculated
from Eq. (2.9) by supposing the wake to consist of a succession
of line vortices aligned parallel to the edge of the plate and
convecting in the downstream direction. For this case the sound
pressure level scales according to the general two-dimensional
result quoted above in (2.8). The vortex shedding actually
triggers the Kelvin-Helmholtz instability of the vortex sheet
whose amplitude of oscillation increases exponentially with
distance downstream according to linear theory. This exponential
growth may be shown to affect the phase but to have no essential
influence on the amplitude of the radiation (Howe, 1976), and it
is for this reason that linear theory may be expected to give a
valuable first approximation to the edge noise interaction
mechanism. Crighton has also examined the possibility of applying
a Kutta condition to remove the edge singularity and, following
earlier work of Orszag and Crow (1970), obtained a solution in
which compressibility played a vital role in removing the
singularitg The corresponding sound pressure level was found to
scale as U a much more shgnlficant velocity dependence than the
previously predicted result (2.8). The conclusion is
erroneous, however, since an examination of Crighton's analysis
reveals that the proposed solution does not satisfy the radiation
condition of outgoing waves at infinity. The same error occurs in
Davis's (1975) application of Crighton's method to the generation
of high frequency edge noise by an airfoil set at zero incidence
in a uniform stream (for which U, = U,). Further, in considering
various cases involving the excitation of a vortex sheet wake by
a stationary line source, Jones (1972), Crighton & Leppington
(1974) and Morgan (1974) discovered no significant effect on the
radiation of imposing the Kutta condition. This is not in
conflict with our earlier comments (Sec. 2) on the importance of
the edge condition, which related to aerodynamic sources 1in
motion relative to the plate.
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Chase (1972, 1975) and Chandiramani (1974) have proposed an
alternative treatment of the edge noise problem with the object
of relating the far field acoustic spectrum to measurable
properties of the hydrodynamic pressure fluctuations on or near
the trailing edge of the plate. Both authors implicitly consider
only the case of a turbulent wall jet (Fig. 1) which does not wet
the surface of the plate (i.e., such that the mean flow does not
make contact with the surface), and take no account of forward
flight nor of the possibility of vortex shedding.

Chase (1972) considers turbulent flow on the side X, > 0,
say, of the plate. The half-plane Green's function which
satisfies Egqs. (2.3, 2.4) above and which, in addition, vanishes
on the downstream extension S (x > 0, = 0) of the plate is
used, together with the assumptlon that %he turbulent quadrupoles
do not spill over the edge of the plate into x, < 0, to express
the acoustic pressure p(x,t) in x5, < 0 in the form

p(x,t) = f p(y,T) (x,y,t,7)d?ydT, (3.1)

ayz

the integration being performed over all time T and over the
half-plane 3. It is argued that 1linear diffraction theory
predicts that the scattered pressure field vanishes 1identically
on S (see, e.g., Noble 1958), and therefore the dominant
contribution to p(y,t) in (3.1) may be taken to be the 1linear
component of the "pseudo-sound"” pressure fluctuations produced by
the turbulence in the absence of the plate. If it may be assumed
that the turbulence is effectively frozen during its convection
in the mean flow past the edge, the distribution p(y,Tt) would
then be equivalent to one half of the pseudo-sound pressure
distribution induced on the plate when the same turbulence 1is
located several hydrodynamic length scales upstream of the edge.
That pressure field may accordingly be estimated from known
characteristics of turbulent boundary layer flow over an
extensive, flat rigid surface. Using (3.1) Chase (1972) is able
to reproduce the Ffowecs Williams & Hall result (2.7) to within a
constant factor which is determined by the precise details of an
assumed spectral distribution of the pseudo-sound field p(y,t).

Chandiramani (1974) and Chase (1975) subsequently refined
Chase's original argument by representing the pseudo-sound
pressure fluctuations as a distribution of harmonic evanescent
waves produced by convecting turbulent elements located above the
plate in x, > 0, and given there by y

2

22 (3.2)
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The phase velocity of these waves parallel to the plate is
subsonic and is taken to characterize the convection velocities
of the turbulence in the wall jet. The Fourier coefficient
6i(u yH2,W) is unknown but in principle may be estimated by first
solving~the diffraction problem of a rigid half-plane irradiated
by the plane harmonic wave:
Ya }
X 3.
2

The solution determines both the far field edge scattered
radiation produced by the evanescent wave and also the pressure
distribution on the surface of the plate, and comparison of the
latter with surface pressure measurements yields statistical
information on B;(uq,u3,w). In practice it is more convenient to
introduce an assumed” form for the spectrum Hi(u1,u3,w) of the
incident pseudo-sound, which satisfies

2

w
u2uio U
C2

ﬁi(ul,ua,w)expgi(u1x1+u3x3—wt)+

l

<Py iy smy )0, (1) 510,,2)> = T (uyuug,e) 8 (uy )8 (u +i ) 8 (wt@)  (3.3)

provided that the turbulent fluctuations are stationary random.

The frequency spectrum density S(w), say, of the acoustic
pressure satisfies

<p?> = [ S(w) dw , (3.1)

0

and in the particular case in which the distribution of the eddy
convection velocity 1is centered about a mean value V, Chase
(1975) deduced that ~

2M_L
Slw) =

) cosB f Ty (uys wcgsa sw)du, . (3.5)

NIy

sina sinz(
mR?

- 00

The integrand is sharply peaked at that value of uqy for which w =
Yeu. In his analysis of the edge noise radiation rom the wall
jet studied experimentally by Scharton, Pinkel and Wilby (1973),
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Chase selected the following functional form for the pseudo-sound
spectrum:

2302C 85(puen)?2
Poy® % (3.6)

. (u. ,u,,w) = .
1 1, 3’ 2IU+1/2

ﬁ

in which v, C, are dimensionless constants, n is a unit vector
parallel +to "a mean eddy convection velocity V and the remaining
symbols have been defined previously. Numerical values for the
undetermined parameters C,, V, v , 8 and UV were obtained by
comparison with surface pressure measurements. The acoustic power
spectrum may be expressed in terms of II. as 1in (3.5) and
therefore 1in terms of the measured statistical properties of the
surface pressure fluctuations. Only a relatively crude
determination of 1II; was possible from the experimental data,
although the reporteé differences between measured and predicted
1/3-octave noise spectra were 1less than &5 dB, the theory
underestimating the actual spectral levels by at most this amount
at frequencies less than the peak frequency (which occurred at a
Strouhal number wD/2TU -~ 0.3, D and U being respectively the
nozzle exit diameter and velocity of the jet: see Fig. 4). We
shall argue below (Sec. 5) that an underestimate of this sort is
not an entirely unexpected feature of the theory, and arises
because of the unrealistic assumption that the jet does not wet
the surface of the plate, from which the theory predicts that the
fluctuating pressure remains finite at the trailing edge. In Sec.
5, the effects of surface wetting will be incorporated into the
theory, and it will be shown that finiteness of pressure can only
be ensured when the full Kutta condition is imposed. We have
already described how the application of this condition leads to
an 1inevitable reduction in the predicted radiation levels. In
practice it is likely that, in applying the idealized edge noise
theories discussed in this report, an edge condition intermediate
between the full Kutta condition and no Kutta condition should
actually be imposed. Predictions based on applying the full
Kutta condition would therefore be expected to yield lower bounds
for the edge noise radiation.

=Veu)s
1 + (u2+u2)62 +|i(_w_~1~l—)]
1 3 v

For the general case specified by (3.6) the following
representation of the mean square sound pressure in the far field
can be deduced from Chase's (1975) analysis:

r'(v) LS " . . (8 .
<> = ——) C.p2v*M_sinasin (— cos?®sg, (3.7)
yaT(v+l/2)(2-v)(1-v) (Rz vios v 2)
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where I'(z) denotes Euler's I'-function and v must be assumed to
exceed 2. This result 1is identical in form with the Ffowes
Williams & Hall expression (2.7) derived directly from the
acoustic analogy theory. Chase's correspondlng formula for the
power spectral density S(w) is given by

S = sy (ne)0? U“M"Simsmz(%)
v _ (w8/V)?(8/V) , (3.8)

[l + \wGi?cB)j v

the mean square pressure <p2> of (3.7) being obtained by
integration over all positive radian frequencies w.

Amiet (1976) has proposed an extension of Chase's theory to
include the presence of an ambient mean flow Un. The radiated
field was determined by first estimating tge strength of a
distribution of surface dipoles on the plate from the <c¢alculated
1ift fluctuation produced by the incident disturbance (3.2). The
dipole strength quoted by Amiet 1is in error, however, in
particular it does not exhibit the expected surface pressure
doubling far upstream of the edge, and detailed conclusions must
therefore await a further development of Amiet's theory.

The generation of sound by turbulent boundary layer flow
past a trailing edge was modeled by Chandiramani (1974), who
chose the functional form of T;(u, ,w) on the basis of
experimental data and the 31m11ar1ty hypo hesis of Corcos (1964)
for a turbulent boundary layer on an extensive, flat rigid
surface. This type of boundary 1layer flow was assumed ¢to
characterize the incident pressure distribution p;(x,t) of (3.2)
and to exist on one side (x, > 0, say) of the rlglé plate for X4
< 0 as well as for a short distance (~ 0(V/w)) downstream of the
edge. The mean flow was parallel to the x1-direction and
Chandiramani deduced that the spectrum of the total radiated
sound power P(w) defined by

po) = [ Sl az (3.9)
0

z
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the.integration being over the surface I of a 1large sphere of.
radius R centered on the source region, can be represented by

P(w) = CMVLééf(w) . (3.10)

Here C 1is a dimensionless constant and ¢f is the frequency
spectrum of wall pressure fluctuations as measutred by an ideal,
point transducer several length scales upstream of the trailing
edge.

The result (3.10) of Chandiramani and the corresponding
formulae (3.5, 3.8) of Chase are in general qualitative
agreement. They are appropriate to the special case in which the
radiated sound 1is generated principally by those eddies located
in the vicinity of the '"convective ridge™ of the turbulence
wavenumber-frequency spectrum. The applicability of the
evanescent wave method is in no way restricted to this particular
case, however, and remains valid for an arbitrary distribution of
eddy convection velocity (c.f., Chase (1975) -equation (5) and
Sec. 5 below).
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SECTION 4 AD HOC MODELS OF EDGE NOISE GENERATION

Hayden, Fox and Chanaud (1976) have discussed a mechanism of
edge noise generation which is a development of earlier work of
Hayden (1969). Using arguments first proposed by Powell (1959),
it 1is contended that the edge noise originates from a system of
dipole sources located just downstream of the edge. The dipoles
are orientated perpendicular to the plane of the plate and are
assumed to characterize the hydrodynamic interaction between the
edge and incident turbulence including any additional effects
associated with vortex shedding and/or shear 1layer instability.

Hayden et al. (1976) argue that the passage of a turbulent
eddy past the trailing edge results in a mismatch in the forces
which act upon the eddy, the stress exerted by the plate decaying
rapidly to zero. Accordingly there is a tendency for the fluid to
accelerate in a direction normal to the plate under the influence
of a 1localized force whose strength per unit volume may be
expressed in the form

pov2 :5.
b=l (a:) : (4.1)

corresponding to an acceleration D/p,. In this equation § is the
correlation scale of the eddy, P the characteristic root mean
square fluctuating pressure and q, is the mean dynamic pressure.
Integration of (4.1) over the wgole of the fluid yields the net
force exerted on the fluid by the plate.

In order to calculate the radiated sound, an equivalent
acoustic dipole is 1introduced whose strength is determined by
comparing the mean square acceleration given by the order of
magnitude formula (4.1) with that which such a dipole would
induce in the flow at a radial distance R =~ § when located 1in
free space. In their comparison, Hayden et al. erroneously
retain contributions to the near field acceleration produced by
the acoustic dipole which involve fluid compressibility, i.e.,
terms which depend on the ability of the dipole to 1launch
acoustic waves. The 1latter is influenced dramatically by the
presence of the half-plane, and a correct comparison of near
fields which takes account of compressibility should properly
include (i) the effect of compressibility on the postulated
volume force (4.1), and (ii) the effect of the half-plane on the
near field of the acoustic dipole.
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The correct interpretation of Hayden, Fox and. Chanaud's
theory is that the gradient 9D0/9x, calculated from (4.1) actually
constitutes the 1leading contribution o the Lighthill (1952)
double divergence quadrupole source (pviv )/Bx 9x3;) of Eq.
(2.2). The radiated sound may then be compﬂted in the manner
prescribed by Ffowes Williams & Hall (1970) using the. half-plane
Green's function. Thus taking (4.1) to be the dipole strength of
an eddy whose center is located in the wake at a distance d from
the edge of the plate, we then obtain in the far field

6|D|2 T
<p?> = 9 = sina-sinz(%) R (4.2)
2wR2%de

where @ 1s the characteristic source frequency.

In applying a result of this type to estimate the edge noise
generated by a turbulent wall jet Hayden et al. (1976) set w =
V/2 and d = §, where 2 is the characteristic distance between
successive eddies of length scale 8§, and V is the eddy convection
velocity. But this procedure overlooks the fact that the
contribution to the linear acoustic field furnished by a typical
eddy decreases very slowly as a function of its distance d from
the edge, the decay being proportional to 1//d (c.f. the
discussion of the Ffowecs Williams and Hall theory following Eq.
(2.6) above). When this is taken into account, by summing over
all eddies along a line parallel to the plate and perpendicular
to the edge, and when in addition a spanwise summation over the
wetted 1length L is performed, it is found that the overall mean
square acoustic pressure_is obtained from (4.2) by multiplying by

a factor of order VdL/w§”, in which case we have
211k
psV*M = =
2y = 0 v (L8P ) qing-sin2(8
<p?> ——gF——-(RZ)(qO) sina+*sin (2) , (4.3)

use having been made of (4.1). This corrected form of the Hayden,
Fox and Chanaud prediction formula is in complete accord with the
Ffowcs Williams and Hall result (2.7).

Tam and Reddy (1977) have discussed the possibility that the
dominant source of trailing edge noise 1is not the mechanism
discussed above, but rather the free turbulence generated in the
wake as a result of flow past the trailing edge, the latter being
unimportant as far as the production of sound 1is concerned.
Numerical computations performed on this basis lead Tam and Redgy
to the conclusion that the sound pressure level scales as U
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This appears to be a mistaken prediction, arising from a failure
to recognize the quadrupole nature of the turbulent wake sources.

Numerical calculations have been performed by Tam and Yu
(1975) to determine the directivity of a dipole source located in
the wake just downstream of the trailing edge of a plate of
finite chord. The structure of the source was not discussed, the
object being to illustrate the asymptotic manner 1in which the
half-plane directivity was approached with increasing source
frequency. Not surprisingly, it was found that as the wavelength
of the sound progressively diminishes, the directivity fluctuates
ever nmore rapigll with angle. In the flyover plane a = n/2, for
example, the sin©(6/2) dependence of the Ffowecs Williams and Hall
prediction should be interpreted as the envelope of the actual
directivity.
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SECTION 5 A UNIFIED THEORY OF TRAILING EDGE NOISE

In this section we outline the development of a theory of
trailing edge noise which incorporates as special cases the
various approaches discussed above. In addition we shall examine
how the application of the Kutta condition affects the predicted
radiation levels and assess the Doppler amplification produced by
source motion relative to the edge and by forward flight.

SECTION 5.1 SOLUTION OF THE ACOUSTIC ANALOGY EQUATIONS

The boundary layer/wall jet flow 1is assumed to be
isentropie, at constant temperature. When the acoustic medium is
in motion it 1is convenient to take the total or stagnation
enthalpy B, rather than the pressure, as the fundamental acoustic
variable (Howe 1975). In the present case this is defined by

B=J——E+-];y2. (5.1)
o} 2

Observe that in those regions where the flow is irrotational and
can therefore be specified by a potential ¢, Bernoulli's equation
implies that

3¢ _ _
3% B. (5.2)
The equation which governs the generation of sound by

distributions of vorticity has been derived by Howe (1975) who
shows that for homentropic flow Lighthill's acoustic analogy
theory may be expressed in terms of the 1inhomogeneous wave
equation

where w = curl v is the vorticity vector.

In order to apply this equation to the edge noise problem we
shall introduce the following simplifying approximations.
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A boundary layer/wall jet turbulent eddy is frozen during
the interval of time ~ 0(§/V) in which it convects past the
trailing edge. This requires the lifetime §/v to be large,
i.e., » << V, and implies that @ is constant in a frame
convecting at the local velocity v. The 'back reaction® of
the trailing edge on the incident turbulence must therefore
be negligible; this is more 1likely to be the case when
induced vortex shedding occurs, which tends to smooth out
large pressure gradients near the edge of the plate.

The eddy convection velocity v is approximated by the local
mean velocity V = Y(x2), a function of the perpendicular
distance x, from the surface of the plate. At 1low Mach
numbers the principal aerodynamic source term on the right
of (5.3) and associated with the incident boundary
layer/wall jet turbulence is therefore the dipole div(w.y) =
div(w.V). This 1is expected to be an adequate approximation
provided that the turbulence differential scale is small
compared with the length scale of the mean velocity V.

There 1is no significant correlation between incident
turbulent eddies which translate at different mean
convection velocities V.

Effects of fluid compressibility are unimportant near the
trailing edge. Terms in the wave operator of (5.3) which
involve the sound speed ¢ are significant only in the
propagation region, where fluctuations in B may be
linearized about a constant mean value BO, say, and the
velocity v set equal to UO in the positive x1-direction.

The 1imposition of the Kutta condition results in the
shedding of a distribution w of vorticity into a wake which
in the vicinity of the edge 1is approximated by a vortex
sheet. The shed vorticity is frozen and convects at velocity
w = (W1,0,W3).

The mean shear velocity Y(xz) and the wake convection
velocity W are both parallel to the unit vector n and

satisfy M;2, Mw2 << 1, where M, = W/c.

Introducing these approximations into (5.3) we have:

3t 0 89X

fl LI 3)2 v2lp = 43 -
£ [ - = div(w.V) + div(T.W), (5.4)

le*
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the terms on the right representing in turn the aeroacoustic
sources associated with the incident and shed vorticity. These
are dipoles with axes parallel respectively to w.V and w.W. Since
w and W must lie in the plane of the plate, the wake dipole is
oriented perpendicular to the plate in accordance with Hayden,
Fox and Chanaud's (1976) hypothesis. The orientation of the
incident boundary layer/wall jet vorticity w is random, however,
and so therefore is the corresponding dipole axis, although it
will be shown:  that the direction of the principal component of
this dipole is again perpendicular to the plane of the plate.

Let Q denote the strength of the frozen incident dipole,
i.e., set] :

g(xl—Vlt,xz,xa—Vat)AY(xz) = @(xl—Vlt,x3—V3t,x2). (5.5)

The incident turbulence will be assumed to 1lie in X5 > 0, so that
we may also write:

1

f Qx, -V, t,x,-V,t,2)8(x,~2)dz (5.6)

0

9

and this linear superposition reduces the problem of solving the
inhomogeneous wave equation (5.4) to the consideration of a
sequence of simpler aeroacoustic problems involving singular
dipole sources of strength Q 6(x2 - z). The complete solution 1is
obtained by integration over all z.

For each component Q 8(x» - z) of the incident turbulent
dipole there will be a corresponding component g8 (x5) of the wake
dipole w.W such that ~

WAW = 6(x2)f g(xl—wlt,xa—wat,z)dz , (5.7)

0

where the §-function signifies that the shed vorticity is
confined to an infinitely thin wake downstream of the trailing
edge. Thus Eq. (5.4) becomes

. 2 ’
{;1? (_g)_t_ + Uo 3}3(1) _vz}B = div {gﬁ(xz—z)} + div {96(}(2)}, (5.8)
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where

B = [dez. (5.9)

0

The unsteady flow induced by the dipole sources in (5.8) is
irrotational in the vicinity of the rigid plate, and (5.2)
therefore implies that the component B satisfies the normal
velocity condition 3B/3x, = 0 on (x, = 0, Xy < 0). In addition B
must fulfill the radiation condition of outgoing acoustic waves
at large distances from the edge of the plate. The techniques
for solving the classical diffraction problem specified in this
way are well documented (see, e.g., Noble 1958; Bowman, Senior
and Uslenghi 1969) and we shall be content to quote the
appropriate form of solution valid in the limit of small bhut
finite mean flow Mach number, M3 << 1.

To do this, set

B = BQ + Bq , (5.10)

BO’ Bq corresponding respectively to the incident and wake dipole
sources on the right of (5.8). We then have:

e

1 Iw E.é i{u x +y(u ) (z-x ) +u x -0t}
v (U, du, du,

-00

(¢]

M w
. 0z
1{( - )x1+r(k)|x2|+y(u1)z+u3x3—wzt}

i sgn(xz) o+ie E) E'@ e du,du,
= o]
" o+ige © Mowz MOmZ
\/A+k ~ v, + — ol E
(5.11)
1 N-q i{vIXI—Y(Vl)X2+U3X3-th}
= - = i du.d
Bq 3 me Ul 113
Mowz
1§ k-—; xl+P(k)lx2|+u3x3—wzt
1 sgn(x,) (»tie © dyu,du,N-§ e
o) g |
Muw M w
-o+ie -0 0 Z 0 Z
Vx+k‘/)\—(\)l+ 5 )[k-(\)1+ S )}
(5.12)
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where €+40.

The various quantities appearing in these formulae have the
following meanings. Fourier transforms Q, g are defined typically
by:

~ A 1 oo —i(].llxl-i-uaxa)
Q = Qu,,u,,2) = JI Q(x,,x,,9e dx dx . (5.13)
~ - (2m)? A 13

The convective frequency w, is given by

w_ = w (z) = E-Y(z) = u,V, o+ u V. (5.14)

after which we have

2
- U s (5-15)

sgn(wz)

€
N

>

|
NIN
w N

+i

[¢)

according as the argument of the radical is +/-, and similarly

sgn(wz) Mo \2 &5\
Yo = AT - (C + °cz)
+i
> . (5.16)
sgn(wz) Y2
r(k) = A2 - k2
+i
/

The three-dimensional vectors u, N are given by

13 =
]

(us=y(u Jsu)
(5.17)

=
I

(\)1 ,_Y(Vl ) ,113)
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where

v, = Wl— (u v+, (V -W)} . (5.18)
1

M w
Finally those branches of /X + X ,"/ - (u1-+ g Z) s
M, w
07z
'// - (vl + — )

are chosen which are either positive or have positive imaginary
parts on the real Kk, U1, vq axes respectively.

In the solutions (5.11), (5.12) the first of the integrals
on the right hand side of each expression represents respectively
the evanescent wave field that would be generated by the dipoles
Q, q in the absence of the plate, and are valid at the plate for
Xo < 0 only. The multiple integrals account for diffraction by
tﬁe plate and are valid for arbitrary x,. In writing down these
results recall that the dipole strength Q is defined by the
frozen pattern of vorticity in the turbulent boundary 1layer/wall
jet. The strength q of the wake dipole is unknown, however, and
can be determined only when the precise conditions at the
trailing edge are specified. We shall examine the opposite
extremes in which either no vortex shedding occurs at the edge,
or the full Kutta condition is imposed and vortex shedding is
permitted in order to remove the trailing edge potential flow
singularity. In the first case g = 0. On the other hand, when the
Kutta condition 1is applied "the flow must 1leave the edge
tangentially, and it follows from (5.2) that

9B
sz -~ 0 as x, > + 0 on X, = 0.

In order to calculate g from this condition observe that
only the multiple-integral contributions to B,, Bq in (5.11),
(5.12) are singular, and therefore for small posigive Xq on x5 =
0, we have
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3%, - 9x, gt 5y’
1 w+i€ 0
= I dk duldu3¢A -k
—04+1 e —co
iy(u,)z
L*Q e N-§
X ~ > S ~
Mow Mowz Mowz M w
k- u1+ S A= u1+ s k- v1+ A— v1+ G
Mowz
iftk - S x1+u3x3-wzt . (5.19)
X e

For arbitrary § the non-exponential term in the integrand
~0(1/V/k) as k + «; and this implies that 3B/3x, ~ 0(1/vxq) as x,
++0 (see, e.g., Noble 1958). By means of the choice

(5.20)

the term in the curly_brackets of the integrand tends to zero at
least as fast as k'2 as k » o, and this is sufficient to ensure
that 98/3x, > 0 at the edge. For each z the disturbed flow on
either side of the vortex sheet wake is irrotational and Eq.
(5.20) together with the definition (5.7) of g may be used to
determine the strength @ of the shed vorticity, although this
calculation is not required in the present discussion.
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Equation (5.20) leads to an important conclusion, which
generalizes an earlier two-dimensional result noted by Howe
(1976), that no edge noise is generated in the particular case in
which the incident and shed vorticity convect at the same mean
velocity To see this observe that if W = v(z), (5.18) implies
that vy =y and therefore when q is chosen to satisfy (5.20),
the 1ntegrand of (5.19) is identically zero for arbltrary values
of k. Thus the diffractional component of B = B vanishes.
When this happens the field due to the shed vort1c1t§ is exactly
that which would be produced by an image of the incident dipole Q
in an infinite rigid plate, the normal derivative BB/axz being
zero at all points of the plate and wake. Under these
circumstances there is no acoustic radiation from the uniformly
convecting frozen turbulence and its image in x5, = 0, because at
subsonic convection velocities the first terms on the right of
each of (5.11), (5.12) decay more rapidly than 1/R in the far
field.

SECTION 5.2 The Far Field Sound

The far field acoustic radiation is obtained by evaluating
the multiple integrals of each of (5.11), (512) by the method of
steepest descents (Watson 1966 page 235), the saddle point in the
(k,u3)-plane being located at

W W
k = Eg sinacosf; wu, = ??-cosa, (5.21)

where (R, 0, a) are the observer coordinates defined in Sec. 2. The
remaining integration with respect to u; may be expressed as an
integral over all values of the convective frequency w, by means
of (5.14) and the suffix z is accordingly discarded. Thus we
obtain the following far field representation of BQ:

—i»/Mv1 sin(%)/sina

B =

Q R/?(l—M )(l-M sino-M cosa) 72
vR V1 V3

1

oodw A wlz iw
x J ZT'EE'QJ exp {— LVL— (l-Mvacosa) + ??'(R_Mox1_0t)}' (5.22)

- oo
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In this formula the notation [u Q] indicates that ue Q(u1,u3,z) is
to be evaluated at

= ® -
B, o= 7, (1 Mvacosa)

P 1) '
p, = -i V} (1 Mvacosa) , (5.23)
w
u, = 5 cosa

and M vR denotes the component of the convection Mach number w in
the observer direction.

To interpret (5.22) it is necessary to express By in terms
of the corresponding acoustic perturbation pressure p,h. Using
Egs. (5.1), (5.2) in the far field it is readily shown that, at
small mean flow Mach numbers, Mg,

pQ— (1+1(Q(1 3 (5-2“)

where M = M (x /R) is the component of (Mg, 0, 0) in the observer
direction. The total acoustic pressure perturbatlon produced by
the turbulent boundary layer/wall jet in the absence of vortex
shedding Py, Say, is now obtained by integration with respect to
z, as in Eq. (5.9). This yields:

-ip_sin & vsina S B
Torzasug o0

/MV [E'@] exp{— L%LE (1-MV cosa) + %? (R-Moxl—ct)}

1 3

. . (5.25)

V4
i 2
(1-M R) (1-M 181na M 3cosa)
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Similarly, adding Egs. (5.11), (5.12) and using (5.20) we
obtain the following expression for the acoustic pressure Pk in
the case in which the Kutta condition is enforced:

. ] o
-1posin(§)/sina f dw dez
0

R/§(1+MOR)(1-MWR)

pK w

~-CO

/le(l—o(z))[g-gjexp{— l%%g(l-mvacosa) + %g(R-Moxl-ct)}

X

1/2
-— - 'l

(5.26)

Myr Dbeing the component of the wake convection Mach number Mw in
tﬂe observer direction. The function -

o(z) = W/V(z) (5.27)

is the ratio of the wake convection velocity. . to that in the
boundary layer/wall jet flow at a distance z from the surface of
the plate. Note in particular that the component of pg at which
g = 1 is identically zero, the sound produced by the
corresponding incident and shed frozen vorticity distributions
being equal and opposite.

SECTION 5.3 The Principal Edge-Noise Dipole

Consider now the particular case in which the component of
the mean boundary layer/wall jet flow parallel to the edge of the
plate is small, i.e., tanB = V3/V1 = w3/w1 <K 1.
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Let § = (@] @y denote the Fourier transform of the
incident vortlclty w éeflned as in (5.13), then

[2-8.V(z)] = -10|u] | (5.28)

[u-Q]

~ o~

at low mean flow Mach numbers. This shows that in the present
circumstances the leading contribution to the edge noise is
provided by the component of vorticity parallel to the edge of
the plate, the corresponding acoustic dipole Q = w. V being
perpendicular to the plane of the plate. ~ -

In general the wetted span L of the edge greatly exceeds the
turbulence correlation scale, and it may therefore be assumed
that within the turbulent flow, and in the neighborhood of the
edge where the turbulence may be regarded as frozen, the
vorticity w constitutes a stationary random function of the
coordinates (x1,x ) parallel to the plate. For the moment we
shall also suppose”that the turbulence convection velocity V 1is
independent of the distance z from the surface of the plate.

A vorticity spectrum density ¢33 may now be introduced by
means of

2 L —
A~ ~ - - - - 2 1 3 Z-7 Z -
<w3(U1,U33Z)w3(u1,u3,Z)> = v (102)‘1’33(11111,23113, le :20)6(1—114'111)

sin[%(u3+ﬁsﬂ

m(u, )

(5.29)

X

In this definition, %,, L4, 2 are respectively vorticity
correlation scales 1in the (% 2 3§-directions, and %, represents
the length scale of the profile of the mean boundary layer/wall
jet The function @ is dimensionless, and for points (x1,z,x ),

yZ X lying within the turbulent flow the vorticity
correlaélon is given by:

< _
ws(xl,xa,z)ms(XI,X3,z)>

1
—
=
o |
PSS
N
N —————
—_—
—. 8
Ls]
w
w
o
P
=
P
=
o|N
N
N
»
N
S ——

i{ul(xl—X1)+u3(x3-X3)}
X e d(Rlul)d(Rsua)- (5.30)
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Equation (5.29) may be used to calculate the 1leading
contribution to the acoustic spectrum S;(w) (defined as in (3.4))

in the approximation of (5.28). 1In~ the absence of a Kutta
condition we have from (5.25):

2,212 . 2(6 3
P,V \ Mv (Lzs) sinaesin (2)00s B
(1+M

2 2 2 2
R OR) (1—MVR) (l—Mv sina)

21 wl,
X v_x vV ) 0 (5-31)
1 1

SI(w) =

in which V is constant, and the dimensionless spectral density X
is given by

1 = Z-7Z =z
x(&u 520, [ If dZdz¢33(21u1’23“3’ [ E:)

—7—1 (z+z) (5.32)

and depends on the structure of the boundary layer/wall jet
profile.

The result (5.31) gives the distribution of acoustic power
as a function of the Strouhal number wf /V1 based on the eddy
length scale and convection velocity parallel to the plate and
perpendicular to the edge. Let c_ be the numerical coefficient
defined by: X

N Gt oawzl (5.33)
X‘V b V 3 .
0 1 1

Cx=f
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then the OASPL predicted by (5.31) becomes:

2,212 2(8 3
. _ ¢, Pg? VEM, (Lza) sinasin (2)cos 8
(1+M

R? or)2(1-M,p) 2(1-M sina)  (5.34)

This result reduces to the basic Ffowes Williams-Hall prediction
formula (2.7) when the Doppler factors associated with the
ambient mean flow and source convection are discarded.

A more convenient representation of the effect of forward
flight 1is in terms of the coordinates of the far field observer
relative to the edge of the plate at the time of emission of the
sound. The observer 1is assumed to be fixed relative to the
ground, 1i.e., relative ¢to the ambient mean flow (UO,O,O),
corresponding to flight at speed Uo in the negative x,-direction.
Let (r,0,%) be the spherical polar coordinates of the observer at
the emission time, © being measured from the positive Xxq-axis.
The appropriate transformation of coordinates is given by

x, = r(M0+cosO)
X, = r cosd+sin® . (5.35)
X, =r sind+sin®

and is illustrated in the "flyover"-plane (¢ = 0) in Fig. 5.

These formulae may be wused to express the observer dependent
guantities (R,B}a),,MOR, M in (5.34) in terms of the emission
time coordinates. The requEing expression for the sound pressure
level assumes a simplified form in the flyover plane, for which
we find:

.29 3
c p2v2V2M LY (l—M0+MV1)31n (2)cos B
<p2> = X 2 v 2
I

. (5.36)

2m 2

r (1+M°cose)3{1+(Mo—Mv Ycos0}?

1
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RIGID PLATE

FIG. 5 OE(V‘,G)) IS THE LOCATION IN THE FLYOVER-PLANE OF THE
GROUND-FIXED OBSERVER RELATIVE TO THE EDGE OF THE PLATE
AT THE TIME OF EMISSION OF THE SOUND; OA(R,é) IS THE
RELATIVE LOCATION AT THE TIME OF ARRIVAL OF THE SOUND.
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Similarly it may  be deduced from (5.26) that in the
approximation of small B, when the Kutta condition is imposed the

OASPL is given by:

2 —3
<Pg”> om )

2,,2%72 2 ’
Expov v Mv(l—o) (Lza)
r

(1-M, +M )sinz(%)cos38
1

> (5.37)

% .
(1+M cose)[1+(M -M l)cose]z[l+(Mo—Mv Yecoso ]2
1

where Mw1 = w1/c and o = W/V.
Comparison of (5.36) and (5.37) reveals that:

(a) Application of the Kutfa condltlg 2r‘educes the
predicted OASPL by a factor of (1 - o) (Vv - /v

(b) Increasing the flight Mach number M, reduces the SPL at
0 = 90° because of the relative velocity factor (1 =- MO + Mv1)'
Assuming that all velocities vary in proportion, this suggests
that at higher Mach_numbers (e.g., ~ 0.5, say), the SPL will tend
to fall below the U”? datum of the Ffowes Williams & Hall (1970)
theory. There may also be additional departures from the fifth
power law arising from possible dependencies of the wetting
length L and the transverse correlation scale £§2on velocity. It

should be noted that, although terms ~ 0( have been
systematically neglected relative to unity in obtaining the above
of the final formulae

results, the Mach number dependencies
(5.36), (5.37) are in precise agreement with those expected

an exact analysis (see Howe 1977).

from

(e) Forward flight and source motion effects are
characterized by five Doppler factors. In the No-Kutta condition
case two are associated with motion of the boundary layer/wall
jet sources relative to the observer, and three with the flight
velocity U When the Kutta condition is imposed only one Doppler
factor arises from the flight velocity, but there are two each
from the incident and shed vortical dipole sources.
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The order of magnitude of the differences in the sound
pressure levels predicted by (5.36) and (5.37) may be estimated
in the case of an airfoil, for which we assume that close to the
trailing edge the eddy convection Mach number in the upper
turbulent boundary layer is given by:

and in the near wake

M = 0.5 M

W1 0

Let ASPL dB denote the amount by which the No-Kutta-condition
prediction (5.36) exceeds the Kutta condition prediction (5.37),
i.e.,

2
1+(M =M, )cosO
L = L 0__ W1 .38
ASPL = 10 log,, Y ( T+ 0050 ) . (5.38)

At a flight Mach number of My = 0.3 the variation of ASPL with
the flyover angle © is given in Table 1.

TABLE 1. TYPICAL VARIATION WITH FLYOVER ANGLE OF ASPL = NO-KUTTA-
CONDITION SPL/KUTTA-CONDITION SPL

C] 0° 30° 60° 90° 120° 150° 180°

ASPL(dB) 9.8 9.9 10.3 10.9 11.6 12.3 12.6
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There is evidently a significant difference in the predicted
sound pressure levels over the whole range of directions,
although the variation due to Doppler factor differences 1is
small, amounting to no more than 3 dB. Such large overall
differences are an indication of the weakness of the present
state of +the theory. Ignorance of the precise condition to be
applied at the trailing edge can apparently result in an
uncertainty in the predicted noise levels which is of the order
of 10 dB. The same difficulty arises when the edge noise problem
is formulated in terms of the pressure fluctuations at or near
the trailing edge, to which we now turn our attention.

SECTION 5.4 Relation Between Surface Pressure Fluctuations
and the Far Field Sound

Consider the general case specified by the formal solutions
(5.11), (5.12), with N-g given by (5.20). We use these results to
determine the fluctuating pressure on the surface of the plate.

On the rigid plate the result corresponding to (5.24) which

relates PQ and Bq becomes
(5.39)

Po .
pQ = 5 (w+1W'V)BQ

for each harmonic component of frequency . This is used in
conjunction with (5.11), (5.12) to express the surface pressure

in the form

Py < o Mowz
- = I[ dulduaj dz<1l + sgn(xz)Erf ix, A+u1 + 5

P = 2

—-—00 0
E.(Y_W)(B'é) i{u1X1+U3X3+ZY(u1)_wzt} M
w_yu,) © (5.40)
A 1
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when the Kutta condition is imposed (c¢.f. Chase 1975). In this
expression the error function characterizes the diffraction by

the trailing edge, and sgn(x,) = +/- according as the rigid
surface is approached from positive or negative values of x,. As
Xq > = on the upper surface (x, = +0) (5.40) predic%s t

familiar pressure doubling of the  pseudo-sound pressure
fluctuations. On the lower surface (x = =0) the pressure
fluctuations tend rapidly to zero upstream of the trailing edge.
The pressure fluctuations in the wake (x5, = 0, x4, > 0) are also

given by (5.40) when the contribution from the error function is
discarded and provided that the mean shear in the wake is small.

Chase (1975) observed that the presence of the error
function in (5.40) implies that only at points close to the edge
of the plate can a simple relation be expected to exist between
surface pressure fluctuations and those in the acoustic far
field. In order to neglect the contribution from the error
function attention must be confined to points x, located either
in the wake, or on the plate well within a characteristic
hydrodynamic wavelength of the edge. It may then be assumed that
the pressure fluctuations induced by the frozen vorticity are a
stationary random function of (x t). In this region a
pressure spectrum function 1[I (u1,u3,3) is introduced which
satisfies:

e o]
<Pp(x X 5 E)pp(x +X ,x +X ,t47) > = [ M su,,0)

-C0

1(u1X1+u3X3—wT)
X e du,du,dw . (5.41)

The neglect of the diffractional error function term in
(5.40) 1implies that the corresponding wavenumber-frequency
spectrum K(u 3,w) coincides with the spectrum of the
pseudo-sound pressure fluctuations considered by Chandiramani
(1974) and Chase (1975). Those fluctuations are produced by
harmonic turbulent elements of wavenumber (u and frequency
w convecting at velocity V = nlw,/pe n), n belég the unit vector
parallel to V introduced "in Sec. 3, and their statistical
properties are determined by those of_ the incident voriticty
distribution contained in the component U Q of the integrand of

(5.40).
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By analogy with (5.29) above a vorticity spectnum function

-1

®. may be defined by means of:

<. -A oA— it = = - E_Zl
{E @(ul,ua,z)}{g g(ul’ua’z)}> ®i<21u1’23u3’ 22 20)

sin |50t (5.42)

x 8(u,+u,) -
m(ugtu, )

where ¢, > 0, in which case we have from (5.41):

2 o] [oe]

<p,(x ,x ,t)p, (x +X ,x +X ,t+1)> = Ei du d [1-0(z)]?2
pK 1° 3’ pK 1 1: 3 33 4 1 1,13 m—z—
0

-0

—2z [y (u) [+i{n X +u X ~u-V(z)1}
dz-dz

. z-z 2z
x Qi(z ul’zsua’ [} > 2 €
2 0
(5.43)

where u+V(z) has been substituted for w,. In writing down this
result™ we have made wuse of the assumption that a significant
correlation can exist between turbulent eddies only if they have
the same convection veloecity V(z) = V(z). Set: '

2 0

p2[1-0(z)]? o =
0 z e—2z|Y(u1)|f o é1“1’23“3’ ifz’ fL)dE
blyu)l? 2

(5.44)

bl (UI,US:Z) =
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which defines a wavenumber spectrum f(u1,u ,2) whose magnitude is
proportional to the mean square seudo~sound pressure
fluctuations near the edge produced by an eddy of wavenumber
(u1,u ) located in a plane parallel to the plate and distant z
from éhe surface.

It follows from (5.41) and (5.43) that the
wavenumber-frequency spectrum I, of pressure fluctuations in the
wake and on the plate close to tﬁe trailing edge is given by:

My sbgow) = [ £, 00,208 (wmumV) dz. (5.45)
0

This represents HK as a sum of independent contributions from
different levels z in the turbulent boundary layer/wall jet.

Consider next the acoustic far field. Let SK(w) denote the
pressure spectral density defined as in (3.4). The general
solution (5.26) may be used to express SK(w) in terms of f, as
follows:

= W w
vesn2 (8 (”f(——(l-M cosa),—cosa,z)dz
S.(w) = o1, sinae-.sin (2) f V1 vV, c
K 2 2¢7_ 2 _ 207_ )
mcR (1+MOR) (1 MWR) . (1 MvR) (1 MV sina)

(5.46)

Taking advantage of the §-function in (5.45) and wusing the
transformation

— w .
Lll = m (1 MVBCOS(I)
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to express (5.46) as an integral (or set of integrals) with
respect to u4y, it 1is easy to see that f(u ,m) can be
eliminated between (5.45), (5.46) to yield the foilowlng relation
between the acoustic spectrum and the pseudo-sound
wavenumber-frequency spectrum:

: . 2 E weoso
S () = -2 (t&) Sinasin (2)""38 = “K(“l’ c ’“’)d“l
K 2 c . 2
TR (1+Mop) 2 (1M )2 - [uen|(1-M _p)2(1-M  sina)
(5.47)
in which y = (u1,9£9§9) M is the component of the eddy

convection Mach number (w/cu n)n in the observer direction, and
M = (w/cyen)cospg. This is the general form of the result (3.5)

g¥ven by Chase (1975).

In practice (5.47) is likely to be of limited utility. This
is because the assumption that pressure fluctuations in the wake
are given by the incident evanescent wave spectrum HK(U1,U ,w) is
an approximation which 1is valid only when the sheaF layer
interaction term v,9V/9x, is negligible. This 1is the condition
for (5.39) - which is strictly correct on the rigid surface of
the plate - to continue to be valid in the wake. Thus reliable
estimates of I must be based on surface pressure measurements
alone, a proposition which is 1incompatible with the condition
that those measurements be restricted to positions x4, closer than
a characteristic eddy length scale to the edge of the plate. This
difficulty 1is absent when the eddy_ convection velocity V is
effectively constant and equal to YV, say. In this case
lg*ni(= w/V) and the Doppler factors may be taken outside the
integral sign in (5.47) to give:

. .2 E ® weosa
2MvL sinasin (2)0058 J HK(ul,——E-—,m)dul
Sy(w) = T - z—w Z . (5.48)
mR (1+MOR) (1-MVR) (1-MWR) (l—lesina)
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Writing

MEGuys0) = [ Ml ou,0)du,, S (5.49)

0O

it follows from (5.41) that

o i(uaxa—wr)
<Prlx, X LB (x, ,x +X ,t4T)> = f n¥(u,,0)e du,dw ,

-00

(5.50)

and accordingly an experimental determination of H§ may be made
from surface pressure correlation measurements at a fixed
distance - X4 upstream of the edge of the plate. In order to
neglect the error function term in (5.40) it is necessary that
the location x, be closer to the edge than the smallest eddy
length scale of interest; in other words, x; defines the largest
frequency, ~ V/|x1|, for which estimates of the far field sound
are possible.

A difficulty arises when we attempt to relate the
surface pressure spectrumll (y,,u,,w), say, to the corresponding
acoustic spectrum SI(w) in the No-Kutta-condition case. This 1is
because the pressure perturbation P1 given by Eq. (5.11) is
singular at the edge of the plate. The pressure is finite at all
points of the wake (x4 > 0, X, @m 0), and the spectrum HI must
therefore be defined with reference to that region alone.

Confining attention to the case in which the eddy convection
velocity is essentially uniform we now obtain:

2MvLsina-sin2(g)cosB I HI(”I’ - ,m)dul

Sylw) = — — . (5.51)
ﬁRz(1+MOR)2(l—MvR)2(1—lesina)(1—o)2

with o = W/V.
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A comparison of (5.48), (5.51) indicates that at small mean
flow Mach numbers a dimensionless function F(wé¥/W) may be
introduced with the properties:

F > 0 as 9%— + ©

where w8*/W is a Strouhal number based on the 1laminar sublayer
thickness &% near the trailing edge. This function may be taken
to characterize the extent to which the Kutta condition is
fulfilled in practice, so that the composite low Mach number
relation between the surface spectrum H(u ,w) and the acoustic
spectrum S(w) may be expected to assume the orm

2MvLsinasin2<%)cosB [ H<p1,929§g3w)du

c

-0

e ﬂRz{l F(‘”Sﬁ)}

The absence of information regarding the exact frequency
dependence of the transition function F(w8¥/W)isa reflection of
the possible errors involved in predicting the level of the edge
noise. The nature of the error is precisely that discussed at the
end of Sec. 5.3 and illustrated in Table 1, and may easily amount
to 10 dB or more.

(5.52)

SECTION 5.5 The Evanescent Wave Theory of Chandiramani
and Chase

The analyses of Chandiramani (1974) and Chase (1975)
discussed in Sec. 3 are such that the perturbation pressure
remains finite at the edge of the plate. It is natural,
therefore, to identify the Kutta condition result S (w) of (5.46)
with the generalization of their theory to 31tuat10ns in which
the mean flow wets the surface of the plate, because when this
occurs the pressure is finite only when the full Kutta condition

is imposed.
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In order to exhibit the effect of forward flight recall that
the far field spectrum must be expressed in terms of the emission
time coordinates (r,0,¢) of (5.35). Note that the frequency @
observed relative to the ground is related to w, that measured by
an observer fixed with respect to the plate, by

w
Q = W . (5-53)

When attention 1s confined to the approximate formulae
(5.48), (5.51) valid when there exists an essentially uniform
eddy convection velocity V(z) = V, we obtain in the flyover plane
(¢ = 0): ~ -

(i) Kutta condition applied:

2 (8
2MVL(1—M0+Mv1)sin (2)0038

SKP(Q) ) 2[1+(M ) 0]2[1+(M -M_ )cos6]?
rr?[1l O—Mwl cos . v,

x f HK[ul,O,Q(1+MocosO)]dul (5.54)

-0

(ii) No Kutta condition:

_ in? 9)
ZMVL(l M°+le)51n (2 cosB

() =

S -
ir nr?(1-5)2[1+M cose]2[1+(M -M_ )cos0]?

1

x f M lu,,0,2(1+M cos0) Jdu, . (5.55)

e o]

Integration of (5.54), (5.55) over all frequencies 2 yields the
parametric dependencies of the far field sound on the root mean
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square turbulence velocity v and the flight and source convection
Doppler factors obtained previously in the analogous formulae

(5.36), (5.37).

Chandiramani's (1974) analysis involves the approximation

J H(ul, wcgsa, w)du1 ~ J H(ul,O,m)du1= 23¢f(%§), (5.56)

- OO -0

where 2% is a transverse eddy length scale and ¢ ~(wS/V) is the
frequency spectrum of the surface pressure fluctuations close to
the edge of the plate. Substitution of (5.56) into (5.54)
indicates that the acoustic spectrum SKr(ﬂ) has the same shape as
the surface pressure spectrum ¢,., provided & does not vary
significantly with . This is 1n accord with an interesting set
of experimental results obtained by Yu and Tam (1977) wusing a
high aspect ratio wall jet. Observations of this
quasi-two-dimensional flow revealed the presence of large scale
vortical structures centered in the upper turbulent shear layer,
and translating at approximately 0.6 Uy, Uy being the nozzle exit
velocity. The interaction of these vortices with the trailing
edge 1induced vortex shedding, in a manner consistent with the
satisfaction of the Kutta condition, accompanied by the
production of a fairly coherent sound field whose directional
characteristics resembled that predicted for a half-plane. Figure
6 illustrates the strong similarity between the observed surface
pressure frequency spectrum close to the trailing edge and that

in the far field at o = 90°.

The formulation proposed by Chase (1975) corresponds to
adopting an assumed functional form for the wavenumber spectrum
f(u1,u3,z) of the aerodynamic sources, viz.

S A2 2T72cH [hep |3
N AT

(5.57)

f(ul’us’z) )U+l/2

(z-h)?

l+(uf+u§)62 + -
(v/u-T)*

In this expression ¢, is a numerical coefficient and 2v/p-V is
the effective 1inner length scale, perpendicular to the plane of
the plate, of an eddy of wavenumber u. It is assumed that v/V<<l,
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FIG. 6. COMPARISON OF THE SURFACE PRESSURE SPECTRUM NEAR THE TRAILING EDGE (a)
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EXPERIMENT OF YU AND TAM (1977).



is sharply peaked at the level z = h 1in the boundary

so that il
layer. Substitution of (5.57) into (5.U46) yields the result (3.6)
postulated by Chase for Hi(u ,u3,w), and use of this in the Kutta

condition spectrum formula (5.48) gives the following
generalization of Chase's (1975) theory to include effects of

source motion and forward flight:

S[Q(1+Mocose),r,O](l—M0+M~ )
V1
' 5 (5.58)

SKI'(Q) = _ ” )
[1+(M0—Mwl)cose] [l+(MO—Mv1)cqse]

where S(w,R,8) 1is the negligible Mach number result defined by
the right hand side of (3.8) at a = w/2 (flyover plane).



SECTION 6 CONCLUSIONS
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1.

The edge noise predictions of the various theories
discussed in this report are essentially identical when
expressed in terms of a common system of flow parameters.
The extended theory of Sec. 5 indicates that at right
angles to  the flight path the edge noise scales as
L2,V (1-My-M, ), where L is the wetted span, £ the
cofrelation scale parallel to the edge, the
characteristic eddy convection velocity, Mg the flight
Mach number, and My the component of the boundary
layer/wall jet Mach number perpendicular to the edge.
When the effects of finite Mach number are discounted,
this result is predicted by the theories of: Ffowes
Williams & Hall (1970); Crighton (1972a); Chandiramani
§1974); Chase (1972, 1975); Hayden et al. (1976); Howe
1977).

The question of whether or not the Kutta condition should
be applied in the theoretical modeling of the edge noise
mechanism remains unresolved. The SPL predicted by the
No-Kutta condition formulation exceeds that predicted
when ghe Kutta condition is imposed by a factor (1 -
W/V)~™<, where W 1is the near wake velocity and V the
characteristic eddy convection velocity in the boundary
layer/wall jet, a difference which can amount to 10 dB or
more. This critical dependence on the edge condition
points to an urgent need for an experimental
clarification of the precise conditions prevailing at the
edge over the relevant ranges of Mach number and
frequency. Chase's (1975) analysis and the experiments of
Yu & Tam (1977) suggest that the appropriate condition is
weighted marginally towards the Kutta condition case.

Forward flight and aerodynamic source motion are
characterized by a dependence of the SPL on five Doppler
factors. In the No-Kutta-condition case three are
associated with the flight Mach number Mg and two with
the motion of the boundary layer/wall jet sources. In the
Kutta condition case, there is one Doppler factor due to
flight, and two each for the motion of the incident and
shed vorticity sources.

A simple practical relation exists between the far field
acoustic spectrum and the measurable hydrodynamic surface
pressure spectrum close to the trailing edge - the latter
obtained from correlation measurements with respect to
time and to spatial separations parallel to the edge of
the plate - only when the eddy convection velocity of the
incident boundary layer/wall Jjet turbulence is
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effectively constant, although that velocity need not
equal the near wake convection velocity of the shed
vorticity. In most cases it seems likely that there will
be a predominant eddy convection velocity, and an
experimental determination of +the wavenumber-frequency
spectrum ¥ (u3,w) of Eqs. (5.49, 5.50) would then permit
the acoustic “spectrum to be estimated via Eq. (5.48).
Existing experimental data (c.f. Hayden et al. 1976) are
not ideal for comparison with theory since they involve
surfaces which are a poor approximation to the
semi-infinite geometry and for which the flow fields
have generally been inadequately specified, and
correlations between interrelated parameters have not
always been made.

The theory described in Sec. 5 is expected ¢to be valid
even at high subsonic Mach numbers provided that it is
permissible to neglect compressible effects in the
specification of the aeroacoustic sources. This Mach
number range is of considerable practical importance, and
it would now seem to be appropriate to attempt to examine
the additional effect of compressibility both
theoretically and by means of a sequence of definitive
experiments.
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